To find the derivative of xxx, use logarithmic differentiation. In order to apply this technique, let the expression being differentiated equal y:
y=xxx.
Now take the natural logarithm of both sides:
lny=lnxxx.
Use the properties of the logarithm to get
lny=xxlnx.
xx is still problematic, so take the natural logarithm of both sides again:
ln(lny)=ln(xxlnx).
Using the properties of the logarithm once more, arrive at
ln(lny)=xlnx+ln(lnx).
Take the derivative of both sides with respect to x. Use the chain rule and the product rule. Simplify the equation,
then solve it for dxdy:
dxdln(lny)lny1⋅y1⋅dxdylny1⋅y1⋅dxdydxdy=dxd(xlnx+ln(lnx))=lnx+x⋅x1+lnx1⋅x1=lnx+1+xlnx1=ylny(lnx+1+xlnx1).
We can make our result a bit more useful by substituting xxx for y. This produces
dxdy=xxxlnxxx(lnx+1+xlnx1)=xxxxxlnx(lnx+1+xlnx1)=xxx+x(ln2x+lnx+x1).